Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Immunobiology ; 219(9): 680-6, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24863408

RESUMO

Transglutaminase 2 (TG2) is a multifunctional protein that contributes to inflammatory disease when aberrantly expressed. Although macrophages express TG2, the factor stimulating TG2 expression remains poorly characterized in these cells. In the present study, we examined the effects of the stress-related catecholamines adrenaline and noradrenaline on macrophage expression of TG2 in RAW264.7 murine macrophages and murine bone marrow-derived macrophages. Treatment with adrenaline markedly increased TG2 mRNA expression and increased TG2 protein levels. While the ß2-adrenoceptor-selective antagonist ICI 118,551 completely blocked adrenaline-induced TG2 mRNA expression, the ß2-adrenoceptor specific agonist salmeterol increased TG2 expression. Noradrenaline also increased TG2 mRNA expression at higher doses than the effective doses of adrenaline. The effect of adrenaline on TG2 mRNA expression was mimicked by treatment with the membrane-permeable cAMP analog 8-Br-cAMP. Thus, increased intracellular cAMP following stimulation of ß2-adrenoceptors appeared to be responsible for adrenaline-induced TG2 expression. Because stress events activate the sympathetic nervous system and result in secretion of the catecholamines, adrenoceptor-mediated increase in macrophage TG2 expression might be associated with stress-related inflammatory disorders.


Assuntos
Epinefrina/metabolismo , Proteínas de Ligação ao GTP/biossíntese , Macrófagos/metabolismo , Norepinefrina/metabolismo , Estresse Fisiológico/imunologia , Transglutaminases/biossíntese , Animais , Células Cultivadas , Epinefrina/farmacologia , Immunoblotting , Macrófagos/efeitos dos fármacos , Camundongos , Norepinefrina/farmacologia , Proteína 2 Glutamina gama-Glutamiltransferase , RNA Mensageiro/análise , Reação em Cadeia da Polimerase Via Transcriptase Reversa
2.
J Pharmacol Sci ; 124(3): 394-407, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24599137

RESUMO

Gender differences in psychiatric disorders are considered to be associated with the serotonergic (5-HTergic) system; however the underlying mechanisms have not been clearly elucidated. In this study, possible involvement of the median raphe nucleus (MRN)-hippocampus 5-HTergic system in gender-specific emotional regulation was investigated, focusing on synaptic plasticity in rats. A behavioral study using a contextual fear conditioning (CFC) paradigm showed that the females exhibited low anxiety-like behavior. Extracellular 5-HT levels in the hippocampus were increased by CFC only in the males. Long-term potentiation (LTP) in the hippocampal CA1 field was suppressed after CFC in the males, which was mimicked by the synaptic response to MRN electrical stimulation. In the MRN, 5-HT immunoreactive cells significantly increased in the females compared with those in the males. Pretreatment with the 5-HT1A receptor agonists tandospirone (10 mg/kg, i.p.) and 8-OH DPAT (3 mg/kg, i.p.) significantly suppressed LTP induction in the males. Synaptic responses to CFC and 5-HT1A receptor interventions were not observed in the females. These results suggest that the metaplastic 5-HTergic mechanism via 5-HT1A receptors in the MRN-hippocampus pathway is a key component for gender-specific emotional regulation and may be a cause of psychiatric disorders associated with vulnerability or resistance to emotional stress.


Assuntos
Emoções Manifestas/fisiologia , Hipocampo/fisiologia , Plasticidade Neuronal/genética , Plasticidade Neuronal/fisiologia , Núcleos da Rafe/patologia , Receptores 5-HT1 de Serotonina/fisiologia , Sinapses/fisiologia , Animais , Condicionamento Psicológico/fisiologia , Medo/fisiologia , Feminino , Hipocampo/metabolismo , Humanos , Potenciação de Longa Duração/efeitos dos fármacos , Masculino , Transtornos Mentais/etiologia , Transtornos Mentais/psicologia , Metaplasia/genética , Ratos , Ratos Wistar , Serotonina/metabolismo , Caracteres Sexuais , Estresse Psicológico/complicações
3.
J Anesth ; 28(3): 390-8, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24113864

RESUMO

PURPOSE: Ketamine, a noncompetitive N-methyl-D-aspartate receptor antagonist, has been used for the treatment of cancer pain as an analgesic adjuvant to opioids. However, ketamine is known to produce psychotomimetic side effects including cognitive impairments under a high-dose situation, presumably as the result of cortical dysfunction. Here, we investigated whether low-dose ketamine was useful as an analgesic adjuvant to morphine for pain control, focusing on frontocortical function. METHODS: To assess the analgesic effects of ketamine with or without morphine, we performed behavioral and histochemical experiments, using the hot plate test and c-Fos expression analysis in rats. The effect on cortical function was also determined by prepulse inhibition (PPI) of the acoustic startle and evoked potentials in the hippocampal CA1-medial prefrontal cortex (mPFC) synapses as measures of synaptic efficacy. RESULTS: Coadministration of ketamine as a subanalgesic dose significantly enhanced intraperitoneal morphine-induced antinociceptive response, which was measured as the increased reaction latency in the hot plate test. In addition, the noxious thermal stimulus-induced c-Fos expression in the ventrolateral periaqueductal gray matter was significantly suppressed by concomitant ketamine and morphine. In contrast, the subanalgesic dose of ketamine did not impair PPI and synaptic efficacy in the mPFC. CONCLUSION: The present results indicate that the morphine-induced analgesic effect is enhanced by a concomitant subanalgesic dose of ketamine without affecting cortical function. Our findings possibly support the clinical notion that low-dose ketamine as an analgesic adjuvant has therapeutic potential to reduce opioid dosage, thereby improving the quality of life in cancer pain patients.


Assuntos
Analgésicos/uso terapêutico , Córtex Cerebelar/efeitos dos fármacos , Ketamina/uso terapêutico , Morfina/uso terapêutico , Dor/tratamento farmacológico , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Analgésicos/administração & dosagem , Analgésicos/efeitos adversos , Animais , Córtex Cerebelar/fisiologia , Relação Dose-Resposta a Droga , Ketamina/administração & dosagem , Ketamina/efeitos adversos , Masculino , Morfina/administração & dosagem , Manejo da Dor/métodos , Ratos , Ratos Wistar
4.
J Pharmacol Sci ; 123(3): 267-78, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24189655

RESUMO

The present study elucidated the functional role of modulatory effects of basolateral amygdala (BLA) on synaptic transmission in the rat hippocampus-medial prefrontal cortex (mPFC) pathway, compared with the hippocampal dentate gyrus (DG). Exposure to conditioned fear stress (CFS) or prior BLA activation enhanced tetanus-induced long-term potentiation (LTP) in DG. A similar synaptic response was found by low frequency stimulation (LFS) prior to tetanus. In mPFC, they did not affect LTP, but prior BLA activation, as well as pretreatment with the N-methyl-d-aspartate (NMDA)-receptor antagonist MK-801 (0.1 mg/kg, i.p.), suppressed LFS-primed LTP. This BLA-mediated synaptic pattern was mimicked by synaptic changes observed in the fear extinction process; prior BLA activation suppressed the synaptic potentiation responsible for extinction retrieval and attenuated decreases in fear-related freezing behavior. These data suggest that LFS-primed LTP in mPFC is related to the neural basis of extinction. Extinction-related synaptic potentiation did not occur in a juvenile stress model that exhibited extinction deficit. In addition, LFS-primed LTP was suppressed in this model, which was reversed by the NMDA-receptor agonist d-cycloserine (15 mg/kg, i.p.). These findings suggest that modulatory effects of BLA on synaptic function in the hippocampus-mPFC pathway play a significant role in fear extinction in rats.


Assuntos
Tonsila do Cerebelo/fisiologia , Extinção Psicológica/fisiologia , Medo/fisiologia , Medo/psicologia , Hipocampo/fisiologia , Córtex Pré-Frontal/fisiologia , Sinapses/fisiologia , Transmissão Sináptica/fisiologia , Animais , Condicionamento Psicológico/fisiologia , Maleato de Dizocilpina/farmacologia , Estimulação Elétrica , Potenciais Evocados , Extinção Psicológica/efeitos dos fármacos , Humanos , Hidrocarbonetos Clorados/farmacologia , Potenciação de Longa Duração/efeitos dos fármacos , Masculino , Modelos Animais , Giro Para-Hipocampal/fisiologia , Ratos , Ratos Wistar , Receptores de N-Metil-D-Aspartato/agonistas , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Estresse Psicológico
5.
Synapse ; 67(4): 161-70, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23152167

RESUMO

Fear extinction-based exposure treatment is an important component of psychotherapy for anxiety disorders such as posttraumatic stress disorder (PTSD). Recent studies have focused on pharmacological approaches combined with exposure therapy to augment extinction. In this study, we elucidated the therapeutic potential of the serotonin 1A (5-HT(1A) ) receptor agonist tandospirone compared with the effects of the N-methyl-D-aspartate partial agonist D-cycloserine (DCS), focusing on the possible involvement of dopaminergic mechanisms. We used a rat model of juvenile stress [aversive footshock (FS)] exposure during the third postnatal week (3wFS). The 3wFS group exhibited extinction deficit reflected in sustained fear-related behavior and synaptic dysfunction in the hippocampal CA1 field and medial prefrontal cortex (mPFC), which are responsible for extinction processes. Tandospirone administration (5 mg/kg, i.p.) before and after the extinction trials ameliorated both the behavioral deficit and synaptic dysfunction, i.e., synaptic efficacy in the CA1 field and mPFC associated with extinction training and retrieval, respectively, was potentiated in the tandospirone-treated 3wFS group. Extracellular dopamine release in the mPFC was increased by extinction retrieval in the non-FS control group. This facilitation was not observed in the 3wFS group; however, tandospirone treatment increased cortical dopamine levels after extinction retrieval. DCS (15 mg/kg, i.p.) also ameliorated the extinction deficit in the 3wFS group, but impaired extinction in the non-FS control group. These results suggest that tandospirone has therapeutic potential for enhancing synaptic efficacy associated with extinction processes by involving dopaminergic mechanisms. Pharmacological agents that target cortical dopaminergic systems may provide new insights into the development of therapeutic treatments of anxiety disorders, including PTSD.


Assuntos
Dopamina/metabolismo , Extinção Psicológica/efeitos dos fármacos , Medo/efeitos dos fármacos , Isoindóis/farmacologia , Piperazinas/farmacologia , Pirimidinas/farmacologia , Agonistas do Receptor 5-HT1 de Serotonina/farmacologia , Transmissão Sináptica/efeitos dos fármacos , Animais , Comportamento Animal/efeitos dos fármacos , Região CA1 Hipocampal/efeitos dos fármacos , Região CA1 Hipocampal/metabolismo , Região CA1 Hipocampal/fisiopatologia , Condicionamento Clássico , Ciclosserina/farmacologia , Reação de Congelamento Cataléptica/efeitos dos fármacos , Masculino , Microdiálise , Córtex Pré-Frontal/efeitos dos fármacos , Córtex Pré-Frontal/metabolismo , Córtex Pré-Frontal/fisiopatologia , Ratos , Ratos Wistar , Receptores de N-Metil-D-Aspartato/agonistas , Transmissão Sináptica/fisiologia
6.
Neurobiol Learn Mem ; 97(4): 361-9, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22415041

RESUMO

Recent studies focus on the functional significance of a novel form of synaptic plasticity, low-frequency stimulation (LFS)-induced synaptic potentiation in the hippocampal CA1 area. In the present study, we elucidated dynamic changes in synaptic function in the CA1 field during extinction processes associated with context-dependent fear memory in freely moving rats, with a focus on LFS-induced synaptic plasticity. Synaptic transmission in the CA1 field was transiently depressed during each extinction trial, but synaptic efficacy was gradually enhanced by repeated extinction trials, accompanied by decreases in freezing. On the day following the extinction training, synaptic transmission did not show further changes during extinction retrieval, suggesting that the hippocampal synaptic transmission that underlies extinction processes changes in a phase-dependent manner. The synaptic potentiation produced by extinction training was mimicked by synaptic changes induced by LFS (0.5 Hz) in the group that previously received footshock conditioning. Furthermore, the expression of freezing during re-exposure to footshock box was significantly reduced in the LFS application group in a manner similar to the extinction group. These results suggest that LFS-induced synaptic plasticity may be associated with the extinction processes that underlie context-dependent fear memory. This hypothesis was supported by the fact that synaptic potentiation induced by extinction training did not occur in a juvenile stress model that exhibited extinction deficits. Given the similarity between these electrophysiological and behavioral data, LFS-induced synaptic plasticity may be related to extinction learning, with some aspects of neuronal oscillations, during the acquisition and/or consolidation of extinction memory.


Assuntos
Região CA1 Hipocampal/fisiologia , Extinção Psicológica/fisiologia , Potenciação de Longa Duração/fisiologia , Memória/fisiologia , Plasticidade Neuronal/fisiologia , Transmissão Sináptica/fisiologia , Animais , Estimulação Elétrica , Potenciais Evocados , Medo/fisiologia , Masculino , Ratos , Ratos Wistar
7.
Eur J Neurosci ; 35(1): 135-45, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22171943

RESUMO

The present study elucidated whether early life stress alters the extracellular signal-regulated kinase (ERK) pathway that underlies fear retrieval and fear extinction based on a contextual fear conditioning paradigm, using a juvenile stress model. Levels of phospho-ERK (pERK), the active form of ERK, increased after fear retrieval in the hippocampal CA1 region but not in the medial prefrontal cortex (mPFC). ERK activation in the CA1 following fear retrieval was not observed in adult rats who received aversive footshock (FS) stimuli during the second postnatal period (2wFS), which exhibited low levels of freezing. In fear extinction, pERK levels in the CA1 were increased by repeated extinction trials, but they were not altered after extinction retrieval. In contrast, pERK levels in the mPFC did not change during extinction training, but were enhanced after extinction retrieval. These findings were compatible in part with electrophysiological data showing that synaptic transmission in the CA1 field and mPFC was enhanced during extinction training and extinction retrieval, respectively. ERK activation in the CA1 and mPFC associated with extinction processes did not occur in rats that received FS stimuli during the third postnatal period (3wFS), which exhibited sustained freezing behavior. The repressed ERK signaling and extinction deficit observed in the 3wFS group were ameliorated by treatment with the partial N-methyl-D-aspartate receptor agonist D-cycloserine. These findings suggest that early postnatal stress induced the downregulation of ERK signaling in distinct brain regions through region-specific regulation, which may lead to increased behavioral abnormalities or emotional vulnerabilities in adulthood.


Assuntos
MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Medo/fisiologia , Sistema Límbico/fisiologia , Sistema de Sinalização das MAP Quinases/fisiologia , Vias Neurais/fisiologia , Córtex Pré-Frontal/fisiologia , Estresse Psicológico/fisiopatologia , Animais , Condicionamento Psicológico/fisiologia , Ativação Enzimática , Extinção Psicológica/fisiologia , Hipocampo/metabolismo , Sistema Límbico/anatomia & histologia , Masculino , Vias Neurais/anatomia & histologia , Córtex Pré-Frontal/anatomia & histologia , Ratos , Ratos Wistar , Transmissão Sináptica/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...